1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
| #include<iostream> #include<vector> #include <memory> #include <cmath> #include <random> #include <algorithm> #include <chrono>
class Cluster { public: struct Options { struct Threshold { double distance = 2.0; double theta = 10.0; }; Threshold threshold = {}; }; struct Pose { double x = 0.0; double y = 0.0; double theta = 0.0; }; public: Options m_options; public : Cluster(const Options &options, std::vector<Pose> &pose_list); ~Cluster(); void Run(); void print_cluster(); protected: std::vector<Pose> m_pose_list; std::vector<std::pair<Pose, uint>> m_cluster_result; };
Cluster::Cluster(const Options &options, std::vector<Pose> &pose_list) : m_options(options) , m_pose_list(pose_list) { Run(); }
Cluster::~Cluster() { }
void Cluster::Run() { m_cluster_result.resize(m_pose_list.size()); for (uint i = 0; i < m_pose_list.size(); ++i) { m_cluster_result[i].first = m_pose_list[i]; m_cluster_result[i].second = i; }
std::vector<uint> cluster_id_list(m_pose_list.size(), 0); uint cluster_id = 0; for (uint i = 0; i < m_pose_list.size(); ++i) { if (cluster_id_list[i] == 0) { cluster_id_list[i] = cluster_id; cluster_id++; for (uint j = i + 1; j < m_pose_list.size(); ++j) { if (cluster_id_list[j] == 0) { double distance = std::hypot(m_pose_list[i].x - m_pose_list[j].x, m_pose_list[i].y - m_pose_list[j].y); double theta = std::abs(m_pose_list[i].theta - m_pose_list[j].theta); if (distance < m_options.threshold.distance && theta < m_options.threshold.theta) { cluster_id_list[j] = cluster_id_list[i]; } } } } } for (uint i = 0; i < m_pose_list.size(); ++i) { for(uint j = i + 1; j < m_pose_list.size(); ++j) { double distance = std::hypot(m_pose_list[i].x - m_pose_list[j].x, m_pose_list[i].y - m_pose_list[j].y); double theta = std::abs(m_pose_list[i].theta - m_pose_list[j].theta); if (distance < m_options.threshold.distance && theta < m_options.threshold.theta) { if (cluster_id_list[i] != cluster_id_list[j]) { for (uint k = 0; k < m_pose_list.size(); ++k) { if (cluster_id_list[k] == cluster_id_list[j]) { cluster_id_list[k] = cluster_id_list[i]; } } } } } }
for (uint i = 0; i < m_pose_list.size(); ++i) { m_cluster_result[i].second = cluster_id_list[i]; } print_cluster(); }
void Cluster::print_cluster() { std::cout << "cluster result: " << std::endl; for (uint i = 0; i < m_cluster_result.size(); ++i) { std::cout << "pose: " << m_cluster_result[i].first.x << " " << m_cluster_result[i].first.y << " " << m_cluster_result[i].first.theta << " " << "cluster_id: " << m_cluster_result[i].second << std::endl; } bool is_cluster = true; for (auto cluster_id : m_cluster_result) { if (cluster_id.second != m_cluster_result.front().second) { is_cluster = false; break; } } std::cout << "is_cluster: " << is_cluster << std::endl; }
int main() { std::vector<Cluster::Pose> pose_list; std::random_device rd; std::mt19937 gen(rd()); std::uniform_real_distribution<> dis(0, 10); for (int i = 0; i < 10; i++) { Cluster::Pose pose; pose = {dis(gen), dis(gen), dis(gen)}; pose_list.push_back(pose); } Cluster::Options options; options.threshold.distance = 5; options.threshold.theta = 50;
Cluster cluster(options, pose_list);
return 0; }
|