参考网址:

(116条消息) 图优化一_a4zhangfei的博客-CSDN博客_图优化

AtsushiSakai/PythonRobotics: Python sample codes for robotics algorithms. (github.com)

图优化理解

通过顶点与边构成相互约束,从而构建残差方程,然后通过最小二乘求解坐标

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import copy
import itertools
import math

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.transform import Rotation as Rot

# Simulation parameter
Q_sim = np.diag([0.2, np.deg2rad(1.0)]) ** 2
R_sim = np.diag([0.1, np.deg2rad(10.0)]) ** 2

DT = 2.0 # time tick [s]
SIM_TIME = 100.0 # simulation time [s]
MAX_RANGE = 30.0 # maximum observation range
STATE_SIZE = 3 # State size [x,y,yaw]

# Covariance parameter of Graph Based SLAM
C_SIGMA1 = 0.1
C_SIGMA2 = 0.1
C_SIGMA3 = np.deg2rad(1.0)

MAX_ITR = 20 # Maximum iteration

show_graph_d_time = 20.0 # [s]
show_animation = True


class Edge:

def __init__(self):
self.e = np.zeros((3, 1))
self.omega = np.zeros((3, 3)) # information matrix
self.d1 = 0.0
self.d2 = 0.0
self.yaw1 = 0.0
self.yaw2 = 0.0
self.angle1 = 0.0
self.angle2 = 0.0
self.id1 = 0
self.id2 = 0


def cal_observation_sigma():
sigma = np.zeros((3, 3))
sigma[0, 0] = C_SIGMA1 ** 2
sigma[1, 1] = C_SIGMA2 ** 2
sigma[2, 2] = C_SIGMA3 ** 2

return sigma


def calc_rotational_matrix(angle):
return Rot.from_euler('z', angle).as_matrix()


def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2):
edge = Edge()

tangle1 = pi_2_pi(yaw1 + angle1)
tangle2 = pi_2_pi(yaw2 + angle2)
tmp1 = d1 * math.cos(tangle1)
tmp2 = d2 * math.cos(tangle2)
tmp3 = d1 * math.sin(tangle1)
tmp4 = d2 * math.sin(tangle2)

edge.e[0, 0] = x2 - x1 - tmp1 + tmp2
edge.e[1, 0] = y2 - y1 - tmp3 + tmp4
edge.e[2, 0] = 0

Rt1 = calc_rotational_matrix(tangle1)
Rt2 = calc_rotational_matrix(tangle2)

sig1 = cal_observation_sigma()
sig2 = cal_observation_sigma()

edge.omega = np.linalg.inv(Rt1 @ sig1 @ Rt1.T + Rt2 @ sig2 @ Rt2.T)

edge.d1, edge.d2 = d1, d2
edge.yaw1, edge.yaw2 = yaw1, yaw2
edge.angle1, edge.angle2 = angle1, angle2
edge.id1, edge.id2 = t1, t2

return edge


def calc_edges(x_list, z_list): # 计算边,并构建残差方程
edges = []
cost = 0.0
z_ids = list(itertools.combinations(range(len(z_list)), 2))

for (t1, t2) in z_ids:
x1, y1, yaw1 = x_list[0, t1], x_list[1, t1], x_list[2, t1]
x2, y2, yaw2 = x_list[0, t2], x_list[1, t2], x_list[2, t2]

if z_list[t1] is None or z_list[t2] is None:
continue # No observation

for iz1 in range(len(z_list[t1][:, 0])):
for iz2 in range(len(z_list[t2][:, 0])):
if z_list[t1][iz1, 3] == z_list[t2][iz2, 3]:
d1 = z_list[t1][iz1, 0]
angle1, phi1 = z_list[t1][iz1, 1], z_list[t1][iz1, 2]
d2 = z_list[t2][iz2, 0]
angle2, phi2 = z_list[t2][iz2, 1], z_list[t2][iz2, 2]

edge = calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, d2, angle2, t1, t2)

edges.append(edge)
cost += (edge.e.T @ edge.omega @ edge.e)[0, 0]

print("cost:", cost, ",n_edge:", len(edges))
return edges


def calc_jacobian(edge):
t1 = edge.yaw1 + edge.angle1
A = np.array([[-1.0, 0, edge.d1 * math.sin(t1)],
[0, -1.0, -edge.d1 * math.cos(t1)],
[0, 0, 0]])

t2 = edge.yaw2 + edge.angle2
B = np.array([[1.0, 0, -edge.d2 * math.sin(t2)],
[0, 1.0, edge.d2 * math.cos(t2)],
[0, 0, 0]])

return A, B


def fill_H_and_b(H, b, edge):
A, B = calc_jacobian(edge) # 计算jacobian矩阵

id1 = edge.id1 * STATE_SIZE
id2 = edge.id2 * STATE_SIZE

H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T @ edge.omega @ A
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T @ edge.omega @ B
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T @ edge.omega @ A
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T @ edge.omega @ B

b[id1:id1 + STATE_SIZE] += (A.T @ edge.omega @ edge.e)
b[id2:id2 + STATE_SIZE] += (B.T @ edge.omega @ edge.e)

return H, b


def graph_based_slam(x_init, hz):
print("start graph based slam")

z_list = copy.deepcopy(hz)

x_opt = copy.deepcopy(x_init)
nt = x_opt.shape[1]
n = nt * STATE_SIZE

# 高斯牛顿法迭代结果
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, z_list)

H = np.zeros((n, n))
b = np.zeros((n, 1))

for edge in edges:
H, b = fill_H_and_b(H, b, edge) # 计算H矩阵和b矩阵

# to fix origin
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)

dx = - np.linalg.inv(H) @ b # 计算残差方程的解

for i in range(nt):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0] # 更新状态

diff = dx.T @ dx
print("iteration: %d, diff: %f" % (itr + 1, diff))
if diff < 1.0e-5:
break

return x_opt


def calc_input():
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]
u = np.array([[v, yaw_rate]]).T
return u


def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)# 获得预测状态

# add noise to gps x-y
z = np.zeros((0, 4))

for i in range(len(RFID[:, 0])):

dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.hypot(dx, dy) # 计算距离
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
phi = pi_2_pi(math.atan2(dy, dx))
if d <= MAX_RANGE:
dn = d + np.random.randn() * Q_sim[0, 0] # add noise 添加状态噪声
angle_noise = np.random.randn() * Q_sim[1, 1] # add noise
angle += angle_noise
phi += angle_noise
zi = np.array([dn, angle, phi, i])# 观测值
z = np.vstack((z, zi)) # 将观测值添加到z中

# add noise to input 添加控制噪声
ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0]
ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1]
ud = np.array([[ud1, ud2]]).T

xd = motion_model(xd, ud) # 预测RFID状态

return xTrue, z, xd, ud # 车体真实值,观测RFID状态,预测车体状态,控制噪声


def motion_model(x, u): # 状态方程,运动模型
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])

B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])

x = F @ x + B @ u

return x


def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi


def main():
print(__file__ + " start!!")

time = 0.0

# RFID positions [x, y, yaw]
RFID = np.array([[10.0, -2.0, 0.0],
[15.0, 10.0, 0.0],
[3.0, 15.0, 0.0],
[-5.0, 20.0, 0.0],
[-5.0, 5.0, 0.0]
])

# State Vector [x y yaw v]'
xTrue = np.zeros((STATE_SIZE, 1))
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning 航位推测法

# history
hxTrue = []
hxDR = []
hz = []
d_time = 0.0
init = False
while SIM_TIME >= time:

if not init:
hxTrue = xTrue
hxDR = xTrue
init = True
else:
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))

time += DT
d_time += DT
u = calc_input()# 输入控制量(v, w)

xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)# 车体真实值,观测RFID状态,预测车体状态,控制噪声

hz.append(z)

if d_time >= show_graph_d_time:
x_opt = graph_based_slam(hxDR, hz)# 输入,航测推测位姿值与观测RFID值
d_time = 0.0

if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(RFID[:, 0], RFID[:, 1], "*k")

plt.plot(hxTrue[0, :].flatten(),
hxTrue[1, :].flatten(), "-b")
plt.plot(hxDR[0, :].flatten(),
hxDR[1, :].flatten(), "-k")
plt.plot(x_opt[0, :].flatten(),
x_opt[1, :].flatten(), "-r")
plt.axis("equal")
plt.grid(True)
plt.title("Time" + str(time)[0:5])
plt.pause(1.0)


if __name__ == '__main__':
main()